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Technical Memorandum

TO: Dr. E.N. Earle, Shell Development Company
FROM: Dr. M. Mellor, CRREL
DATE : October, 1981

FRACTURE TOUGHNESS MEASUREMENTS FOR ICE

As part of the current sea ice:study, CRREL has been asked tovcomment on
fracture toughness measurements for ice and, in particular, to suggest what emphasis
should be given to fracture toughness studies.

In responding to the Shell request, we first review some of the relevant
terminology and historical developments of the subject.
Toughness. In everyday speech,toughness is a quality which enables people, objécts,
or materials to endure punishment or strain without yielding. In engineering,
toughness is a rather poorly defined concept, but traditionally it has been associated
with the capacity of a material to absorb energy before fracturing. Clearly energy
alone, as represented by the area under a stress/strain curve, is not an adequate
measure of toughness, since high strength and small failure strain could indicate
large energy for a very brittle material. Perhaps the best way to define and measure
toughness is in terms of the ability to dissipate energy Before fracturing. In other
words, toughness can be associated with the integral of stress multiplied by
inelastic strain, or with total strain energy minus the recoverable strain energy.
However, in recent years the term toughness has been appropriated, or perhaps mis-
appropriated, for virtually exclusive use within the context of fracture mechanics.

In fracture mechanics the term toughness, cr fracture toughness, is defined
properly as the critical value of the Irwin parameter G,’which is alsoc known as a
"erack extension forece". G, or Gc’ has the dimensions of energy per unit area and

it is, in fact, equal to twice the effective specific surface energy for fracture.



However, many practitioners of frac%ure mechanics refer to the critical stress
intensity factor Kc as the fracture toughness of a material, even though Kc has
dimensions which have no direct relation to ény reasonable definition of toughnesé.
In order to keep things clear, we have to refer back to the origins of fracture
mechanics, and to the development of modern notions about fracture toughness.

Griffith Theory. Starting from the observation that the bulk strength of brittle

solids is, in general, orders of magnitude lower‘than the theoretical strength
deduced from consideration of interatomic force, A.A. Griffith postulated the
existence of minute cracks and associated stress concentrations. Drawing upon the
stress analysis given by Inglis for a two-dimensional elliptic crack in an elastic
plate, Griffith equated the change of potential energy in the plate to the change
of surface energy in the crackras the crack grew in length. For a thin elliptic

crack of length 2c:
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where E is Young's modulus for the plate, K is the specific surface energy of the
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material and ¢ is the applied stress (tensile and perpendicular to the long axis of

the crack) at which crack growth occurs. Thus

T = <%3v1<%>‘/1 (2)

for plane stress. TFor plane stralin the corresponding relation is
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Where % is Poisson's ratio. Numerically, the two equations are not much different.

Much the same result is obtained by direct considerstion of theoretical material
strength and stress concentration at the end of an elliptic crack. From considera-
tion of interatomic forces as a function of separation, the theoretical tensile

strength of the material Q; is
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where a is the atomic spacing in the unstrained state. From the Inglis stress

analysis for an elliptic crack with tip radius s the stress at the crack tip
/a

Cet s
, v ' -
T = BT Gﬂ‘ (5)
where G is the applied stress in the plate. Equgting C%t to 9 for crack growth:
g = (.ﬁ-\vt(é.\iy‘ (6)
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in which/o is considered to be of the same order of magnitude as a for a sharp

crack. This version is identical to Griffith's plane stress relation if

(/=) a = 2-5§5a (7)
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In addition to providing a reasonable physical explanation for the discrepancy
between theoretical strength and actual strength, Griffith was able to develop a
failure criterion for the onset of brittle fracture in multiaxial stress states.

Modification of Griffith Theory. Griffith developed his theory primarily to explain

the properties of glass, and the theory was later believed to be generally applicable
to brittle solids. However, if the strength equations which contain the surface
energy x are applied to metals or polymers, the predicfed strength often turns out

to be very much lower than the actual strength of the real material. This can be
explained by plastic yielding at critical stress concentrations, which has the

effect of blunting the cracks.

In the late forties, Orowan and Irwin independently modified the Griffith
equation for strength by taking into account the energy dissipated in localized
plastic yielding, while at the same time retaining the elastic analysis for the
overall effect of a crack because the plastic yield zones were considered small

relative to the crack length. Orowan substituted for the surface energy g a term
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which included a specific energy for plastic working Xp:

o s (@ [eepR] = @R

for plane stress. The approximation follows from the fact that Y > X .

Irwin expressed the same idea by denoting the critical rate of change of energy

with crack length by a parameter G,. Being an energy per unit area, G, has the

dimensions of force per unit length, and it is referred to as a crack extension
force. In the Irwin formulation

?,2 ,/3_
= ! E G,
9 <r(> < ¢> (9)

for plane stress. Thus the Orowan and Irwin expressions are identical with

Q= 2(\&*’&\95 (10)
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An important feature of the Irwin and Orowan modifications is the combination
of elastic and plastic assumptions. The local stress field near a crack tip is
allowed to create plastic yielding, but the overall solid matrix is still assumed
to behave eldstically. Obviously, these assumptions can only be justified if:

(1) the spaéing between cracks is significantly greater than tﬂe extent of the

plastic yield zones at the crack tips, and (2) the solid matrix really is elastic.

Fracture Mechanics and Fracture Toughness. The name "fracture mechanics" has come

to be used, somewhat restrictively, for study of the effect of cracks on the bulk

strength of solid materials. It derives from Griffith theory, and from the

later modifications of that theory by Irwin and Orowan, as outlined above.
Griffith's original idea was that fracture occurred when a crack extended

without limit because an increment of crack extension involved a gain of surface

energy US less than the drop of potential energy of the surrounding elastic

terial :
materia U?

i SUPi > \‘;Us\ (11)
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Irwin and Orowan introduced the idea of energy dissipation by plastic yielding at
a crack tip ( SV%J and the possibility of external work input to the system ( SV%Q,

making the critical energy balance:

TU, + SW, > S + Sw? (12)

Since va;)y.glé and g&qzis, for all practical purposes, zero, the condition

simplified to

SV > W, 13)

The change of potential energy S&% as the crack extends by an increment of length

‘gx. can be equated to a unit force G multiplied by's;:

EUF = G Sx

(1b)
or
S,
G = G (15)

This 1s Irwin's crack extension force, which was mentioned earlier. From elastic

analysis, the critical value G, for unstable crack extension is

2
G = T= o ,
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for plane stress, and
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for plane strain, where § is the applied stress at failure.
Analysis of the stress distribution around an idealized crack in an elastic

plate gives stress fields that are geometrically similar for geometrically similar



"aracks". The absolute magnitude of a given stress component is proportional to
the stress applied to the plate, © , and it is also proportional to the square
root of a characteristic linear dimension of the crack, such as the half-length

_of the major axis c. Thus the effects of geometric scale and stress. level can be

expressed by a stress intensity factor K which contains the product c‘,\ﬁE . For

convenience, K is defined as

“ \
K = S C”TC\) (18)

This is obviously another way of expressing the crack extension force G. In

terms of the critical values for failure, Kc and Gc:

2
K
G, = = (19)
=
for plane stress, and
h 8
K e Pl
S, = - <_,. > (20)
=

for plane strain.

In this summary of crack analyses the basic ideas have been developed with
reference to the opening or closing of a two dimensional crack in a plate that is
under uniaxial tension or compression. However, in fracture mechanics three
distinct types of crack motion are recognized {(Fig. 1). Mode I is the simple sep-
aration considered for the foregoing discussion. Mode II is in-plane shearing
displacement, with opposite faces of a flat ecrack sliding across each othér in the
direction of the crack's major axis. Mode III involves twisting, and sliding of
opposing crack faces in a direction normal to both axes of the two-dimensional
crack. As far as materials testing is concerned, interest centers on Mode I, and
virtually all test methods are designed to extend cracks according to Mode I. The
critical value of the stress intensity factor for Mode I is denoted by the symbol

K_ .
Ic



Fig. 1 Displacement and crack propagation modes

Application of Griffith Theory to Ice. There is no reason to believe that basic
Griffith theory will have much relevance to the failure of ice at low strain rates.
However, for high strain rates (2 \C;3 s at typical temperatures) there is
ample evidence that ice deforms elastically, with a modulus close to the true
elastic modulus. Thus before applying modern fracture mechanics, which was
developed largely to explain the inapplicability of Griffith theory for certain
materials, we should check to see whether Griffith theory might apply to ice
under high strain rates.

Equation (2) provides a means of calcﬁlating the uniaxial tensile strength
of ice C; as a function of the controlling flaw size when Young's modulus E and
the specific surface energy x are known. For ice of very low porosity,

( S'0.0l), the true Young's modulus E is 9 to 10 GPa at typical temperatures.
For non-saline ice, the vapour/solid specific energy 8 is approximately 0.1 J/m2)

and the liquid/solid surface energy is about 30% of the vapour/solid value (Fletcher,

1970; Hobbs, 197h.* The vapour/solid value is probably the appropriate one

*¥Liu and Miller (1979) use values that are off by two orders of magnitude
due to incorrect conversion of Fletcher's values.
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for consideration of brittle fracture in "cold" ice, but the lower liquid/solid
value might be applicable in ice which has a "liquid—like layer" or liquid-
filled flaws. The latter condition might give something equivalent to the Rehbinder,
or Joffe, effect, whereby & is reduced by adsorption of certain surface-active
chemicals and strength decreases in conseqguence. .
If we substitute into equation (2) E= 10 GTa and X~ SR 3/"‘"‘;
U”-r - ___)Uz‘<\0°x \Q“\>‘/2
- 2.52 va10* P,
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where the half-length of the controlling flaw, c¢, is in metres. In figure 2, the

resulting calculated values of(g,are given as a function of the flaw size Z2c.

Figure 2 gives a comparison of calculated values with measured values of
for non-saline ice, making certain assumptions about "flaw size" for the various
test specimens. In none of the test specimens were Griffith cracks actually
observed or measured, and so identifiable structural dimensions such as grain size
and bubble size have been used to permit plotting of the data. It seems unlikely
that the controlling "Griffith crack" could be larger than the grain size in
these intact lab specimens, but it is conceivable that the controlling flaws could
be smaller than the grain diameter, perhaps by a factor of 2 or 3 if we are con-
sidering a mosaic of equant but angular grains.

The real importance of figure 2 is that it gives theoretical strength values
which are credible in comparisons with actual test data. While figure 2 does not
prove that simple Griffith theory is wvalid for ice, it certainly gives little
reason for rejecting Griffith theory out of hand. In other words, we have no need to
invoke a specific energy for plastic working ( gp) which is orders of magnitude

greater than K , as is apparently the case for metals.
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If simple Griffith theory weré to prove valid for ice,there would be little
Justification for studying fracture toughness, which is a measure of a material's
departure from simple Griffith behaviour. However, various investigations have

measured fracture toughness, and it is necessary to review the data.

Fracture toughness of ice. Virtually all fracture toughness measurements on ice

depend on tests which flex or pry open a crack in "Mode I". Test data are thus

presented in terms of the critical stress intensity factor, KIc' Because the

measured values for Ky, vary greatly, and because we need some intuitive "feel

when considering these values, it is worth recalling what Ko means.

Toughness is measured by the specific energy dissipation at failure Gas

which is also known as the critical crack extension force. KIc is related to Gc by

K. = (ERY”

in plane stress, and

- Yo
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in plane strain. Thus there is a simple direct relation between KIc and GC if

E is a constant. KIc is also related to the overall tensile failure stress of the

material O :

i

- (="

where ¢ is the half-length of the controlling cracks. This relation implies that,

K

Te

if ¢ is constant and the stress state does not change, Kio is directly proportional
to the bulk strength of the material.
- -1
For ice straining at low rates, say less than 10 6 571, we would not expect

KIc to have any relevance, since the ice is inelastic and it flows without cracking.



At extremely high rates and low temperatures, ice could conceivably become perfectly
elastic and perfectly brittle, and under such conditions the original Griffith
theory ought to apply. For such a limit, wiunxptending to the specific surface

energy & R KIc would tend to a low value:
1
‘2
K. — (2=
I

in plane stress. Taking E = 10 GPa and the grain boundary specific energy
x = 0.1 J/m? for freshwater ice,\the lower limit of KIc might be about 45 kN-m-3/2
for plane stress.

Measured values of KIc for.ice are typically of order 100 kN—m‘3/2, This is
not much higher than the "Griffith" value, and it implies that X? 3 SK 5
assuming that E is more or less constant.

When strain rate, or loading rate, is varied in a fracture toughness test for
a given type of ice, we would expect Ky, to decrease as é c&'& increases, at
least for non-saline ice. While at least one set of experiments shows a trend
opposite to this, the overall trend shown by compilation of published data is in
the expected sense (Fig. 3, 4). Rate effeéts were ofiginally expressed in terms
of the speed of the testing machine, which ié clearly of limited interest, but now
the accepted rate variable seems to be ﬁIs which is really the inverse of the time
to failure. Strain rate has been used as a variable, but there are some problems
of interpretation.

In sea ice, Ky, has been found to decrease with increase of loading rate for
}.(t > lo.z\gN-v:\B’? S“t , or effective é > 16.3 S"‘ (Urabe et al., 19803 Urabe
and Yoshitake, 198la & b). However, for lower rates Ky, appears to be insensitive

to rate (Fig. 5). The lowest measured values for sea ice are lower than the

expected "Griffith value" for pure ice.

10



In discussing rate effects, we have assumed that K1e will decrease as the

material become more elastic and more brittle due to higher loading rates. Extending

this line of argument to temperature effects, we might therefore expect K1 to

decrease as temperature decreases, since lower temperature undoubtedly makes ice
more elastic and more brittle. However, experimental data (Fig. 6) seem to show
exactly the opposite trend, with KIc increasing as temperature decreases. This
observed trend is consistent with the fact that tensile strength.q}increases as
tem@erature decreases, since Ky, 1s proportional to strength if the crack length

2c is constant. Nevertheless, there does appear to be fundamental contradiction
between the observed temperature effect and the rate effect if the ideas of fracture
mechanics are applicable to ice.

If measurements of Kio are valid, they permit a systematic treatment of flaw
size. For a constant value of K1e and variation of crack length 2c between samples,
the tensile strength Q}Hﬁght be expected to be inversely proportional to /?i
Urabe and Yoshitake (1981) tested both notched and un-notched beams with varying
grain size in order to calculate flaw size for the ice, and they found a perfect 1:1
correlation between calculated flaw size and observed grain size. However, this
experiment appears to merit further discussion, since botht;Tand Ky, were
functions of grain size, and the effect of grain size ontg%appears to be in the
wrong direction.

Vaudrey (1977) measured Ky, for sea ice at -10° and -20°C, and plotted the
results against the square root of brine volume for a very narrow range. Vaudrey
drew a line on the graph to indicate linear decreas of Ky, with increase in the root
of brine volume but, in fact, there was no significant correlation between the
variables (K, values scattered by a factor of 5). Shapiro et al (1981) made
measurements in the same range (brine porosity 0.16 to 0.38), and showed a more
convincing decrease of K1, with increase of porosity, although there was still

large scatter.
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Discussion. When ice is:tested at high rates, so that its behaviour is almost
' purely elastic, simple Griffith theory gives credible predictions of tensile
strength, and it predicts values of Ky, which are very close to the values measured
at high strain rates.

If ice behaves perfectly elastically, we expect little variation ofcq,and
with temperature, since decrease of temperature involves a slow increase of E and

KIc

a slow decrease of X . The experimental data forqg are consistent with.this speech
and the data for K;, given by Miller (fig 6) suggest that the expectation might be
borne out if loading rates are sufficiently high.

At the same time, ﬁurely elastic behaviour ought to eliminate variation of
Q; and Ky, with strgin rate, since neither E nor‘x are expected to be significantly
rate-dependent. The limited data f'orc);’r as a function ofé (Hawkes and Mellor, 1972)
are consistent with this expectation, but data for Ky, do not appear to be tending to
a limiting value for high strain rates.

To sum up the foregoing, ice loaded at high rates behaves elastically, and the
limited experimental data for(;,and Kr. at high rates are not in serious copflict
with the predictions of Griffith theory.

Going to the other extreme of behaviour, when ice is strained at very low rates
its elastic behaviour is completely overwhelmed by non-linear viscous flow. In
this ranée of behaviour there is no justification for applying elastic fracture
mechanics, and KIc has no significance whatscever.

This leaves the question of the intermediate range, where elastic deformation
and viscous flow both contribute significantly to the total strain. In considering
the possible relevance of Ky, for this range, it is important to keep in mind the
derivation of the relevant theory, and also the distinction between ideal plasticity
and viscous flow.

In deriving the theoretical framework into which Kg, fits, it is ‘assumed that

the solid material is elastic-plastic, so that the genersl matrix can remain elastic



while only the most highly stressed zones suffer plastic yielding. However, ice
does not have a finite yield stress; it begins to flow at very low stresses, and
the flow rate increases with the third or fourth power of stress. Thus, if loading
rate 1s low enough to permit significant inelastic strain prior to final failure,
it is unlikely that elastic~-plastic fracture meéhénics would be applicable. Never-
theless, there might be a range of behaviour, at rates just below those which give
purely elastic responsé,’where Kyo is a useful parameter. To examine this pos-
sibility, we have to re;onsider the experimental data.

K7o 1s supposed to be a measure of toughness, and a material's ability to
resist weakening by flaws and stress concentrations. We therefore expect Ky, tQ
increase as ductility increases, but we have to keep in mind that increase of KIc
would usually be reflected by an increase of strength.

For ice, Ky, certainly appears to increase as strain rate decreases from the
pure elastic range. There are also experimental data showing increase of strength
as strain rate decreases through the same range, but these data are not yet con-
clusive because of the possibility that the trend is caused by imperfections in
test technique.

However, as ice temperature decreases, the limited data show KIC increasing,
even though the material is undoubtedly becoming more elastic and more brittle.
This trend of K1. corresponds to the trend shown by strength, indicating a degree
of internal consistency in the theoretical ideas, but it is in direct conflict
with the strain rate response. Perhaps more to the point, it is in conflict with
common sense --— ice does not get tougher as it gets colder.

The reasons for this strange behaviour of K1, are not immediately obvious, but
cne might suspect the test method, which is usually beam flexure. Overall, the
strength data from beam flexure tests on ice are wildly inconsistent, and it is not

hard to see why. The basic assumptions for beam analysis are as follows:

16
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(1) linearly elastic homogeneous material, (2) equal moduli in tension and com-—
pression, (3) small strains, with cross-sections remaining plane and mutually
parallel. These are met only at very high strain rates, where the test becomes
very sensitive to imperfections of specimen preparation and loading technique.

Even 1f a perfect test is made at high rate, fracture initiates at the surface, the
zone of critical stress is very thin, and the crack propagates in a stress
gradient. ‘If conditions are such that the beam is not perfectly elastic, the
degree to which the assumption remain valid varies with temperature and strain
rate. Thus the variation of "flexural strength" with strain rate and temperature
is unlikely to provide a good indication of the variation of‘O;with strain rate and
temperature. When ice beams are notched for fracture toughness tests, a further
level of complication is introduced.

Conclusions. When ice behaves elastically (é.a.h§3§”at typical temperatures),
simple Griffith theory can be used to assess the effects of flaws and stress
concentrations.

When ice is subject to significant creep (é < 1075 72 at typical tempera-
tures), K1o has no significance.

For the range of behaviour where ice is quasi-brittle (say 1075 to 1073 g1
at typical temperatures), the existing data for KIc are not easy to accept at face
value. Until the apparent contradictions are resolved, it would seem unwise to
use K1, as a design parameter.

Recommendations. Fracture toughness measurements by cther research groups should

be kept under review. New measurements by Shell probably ought to be deferred
until beam flexure testing has been subjected to critical examination. It may be
necessary to devise new test methods in order to obtain reliable measurements of

KIc for ice.
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Appendix

Dislocation theory for crack nucleation

Griffith theory and its derivatives deal with the growth of existing cracks.
There is énother body of theory which deals with the nucleation of cracks by pile-~
up of dislocations. The latter theory is'usually considered to have originated
with Zener, and its development is associated with the names Stroh, Petch, Cottreil,
Smith and Barnby.

The dislocation theofy gives an expression for the effective shear stress 't@;p

which is needed to produce crack nucleation:

\/2
T - INY S }

where G 1s the shear modulus and L is the length of the dislocation pile-up. Sub-

stituting for G in terms of E and rearranging the equation:

'EefF - Ce(w-u )( ) | e

This is similar in form to the Griffith equation if L is thought of as a flaw size.
However, ﬁzfpis the shear yield stress TTY s, Which is directly proportional to
5 .

»g minus a "friction stress” . which resists dislocation notion:
ha > . .

"

T, - T,: (A-3)

Tefs; 2]

Carter (1970) applied these ideas to ice, taking 't;b= O /2 and L = a/2,
where d 1s the grain diameter (others have tsken L = 4). He apparently determined
‘7: experimentally as 3 kgf/cmg, but did not explain how this was done. The prediction

equation was thus

_ ~ (E 2T,
Ox z(..w)) <—‘g“‘> =T (4-4)

This gives a grain size dependence similar to that predicted by the Hall-Petch

1
relation, instead of the simple d™2 relation which is cbtained by identifying grain

size with Griffith cracks.
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